Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3324, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637512

RESUMO

CRISPR-Cas are adaptive immune systems in bacteria and archaea that utilize CRISPR RNA-guided surveillance complexes to target complementary RNA or DNA for destruction1-5. Target RNA cleavage at regular intervals is characteristic of type III effector complexes6-8. Here, we determine the structures of the Synechocystis type III-Dv complex, an apparent evolutionary intermediate from multi-protein to single-protein type III effectors9,10, in pre- and post-cleavage states. The structures show how multi-subunit fusion proteins in the effector are tethered together in an unusual arrangement to assemble into an active and programmable RNA endonuclease and how the effector utilizes a distinct mechanism for target RNA seeding from other type III effectors. Using structural, biochemical, and quantum/classical molecular dynamics simulation, we study the structure and dynamics of the three catalytic sites, where a 2'-OH of the ribose on the target RNA acts as a nucleophile for in line self-cleavage of the upstream scissile phosphate. Strikingly, the arrangement at the catalytic residues of most type III complexes resembles the active site of ribozymes, including the hammerhead, pistol, and Varkud satellite ribozymes. Our work provides detailed molecular insight into the mechanisms of RNA targeting and cleavage by an important intermediate in the evolution of type III effector complexes.


Assuntos
Proteínas Associadas a CRISPR , RNA Catalítico , RNA/metabolismo , RNA Catalítico/metabolismo , Sistemas CRISPR-Cas/genética , DNA/metabolismo , Domínio Catalítico , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Clivagem do RNA
2.
Nat Commun ; 15(1): 2084, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453941

RESUMO

A major challenge to achieving industry-scale biomanufacturing of therapeutic alkaloids is the slow process of biocatalyst engineering. Amaryllidaceae alkaloids, such as the Alzheimer's medication galantamine, are complex plant secondary metabolites with recognized therapeutic value. Due to their difficult synthesis they are regularly sourced by extraction and purification from the low-yielding daffodil Narcissus pseudonarcissus. Here, we propose an efficient biosensor-machine learning technology stack for biocatalyst development, which we apply to engineer an Amaryllidaceae enzyme in Escherichia coli. Directed evolution is used to develop a highly sensitive (EC50 = 20 µM) and specific biosensor for the key Amaryllidaceae alkaloid branchpoint 4'-O-methylnorbelladine. A structure-based residual neural network (MutComputeX) is subsequently developed and used to generate activity-enriched variants of a plant methyltransferase, which are rapidly screened with the biosensor. Functional enzyme variants are identified that yield a 60% improvement in product titer, 2-fold higher catalytic activity, and 3-fold lower off-product regioisomer formation. A solved crystal structure elucidates the mechanism behind key beneficial mutations.


Assuntos
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Narcissus , Amaryllidaceae/metabolismo , Alcaloides/química , Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/metabolismo , Narcissus/química , Narcissus/genética , Narcissus/metabolismo , Metiltransferases/metabolismo , Plantas/metabolismo , Hidrolases/metabolismo
3.
Res Sq ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37163044

RESUMO

CRISPR-Cas systems are an adaptive immune system in bacteria and archaea that utilize CRISPR RNA-guided surveillance complexes to target complementary RNA or DNA for destruction1-5. Target RNA cleavage at regular intervals is characteristic of type III effector complexes; however, the mechanism has remained enigmatic6,7. Here, we determine the structures of the Synechocystis type III-Dv complex, an evolutionary intermediate in type III effectors8,9, in pre- and post-cleavage states, which show metal ion coordination in the active sites. Using structural, biochemical, and quantum/classical molecular dynamics simulation, we reveal the structure and dynamics of the three catalytic sites, where a 2'-OH of the ribose on the target RNA acts as a nucleophile for in line self-cleavage of the upstream scissile phosphate. Strikingly, the arrangement at the catalytic residues of most type III complexes resembles the active site of ribozymes, including the hammerhead, pistol, and Varkud satellite ribozymes. Thus, type III CRISPR-Cas complexes function as protein-assisted ribozymes, and their programmable nature has important implications for how these complexes could be repurposed for applications.

4.
Methods Enzymol ; 685: 461-492, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37245912

RESUMO

We describe the experimental methods and analysis to define the role of enzyme conformational changes in specificity based on published studies using DNA polymerases as an ideal model system. Rather than give details of how to perform transient-state and single-turnover kinetic experiments, we focus on the rationale of the experimental design and interpretation. We show how initial experiments to measure kcat and kcat/Km can accurately quantify specificity but do not define its underlying mechanistic basis. We describe methods to fluorescently label enzymes to monitor conformational changes and to correlate fluorescence signals with rapid-chemical-quench flow assays to define the steps in the pathway. Measurements of the rate of product release and of the kinetics of the reverse reaction complete the kinetic and thermodynamic description of the full reaction pathway. This analysis showed that the substrate-induced change in enzyme structure from an open to a closed state was much faster than rate-limiting chemical bond formation. However, because the reverse of the conformational change was much slower than chemistry, specificity is governed solely by the product of the binding constant for the initial weak substrate binding and the rate constant for the conformational change (kcat/Km=K1k2) so that the specificity constant does not include kcat. The enzyme conformational change leads to a closed complex in which the substrate is bound tightly and is committed to the forward reaction. In contrast, an incorrect substrate is bound weakly, and the rate of chemistry is slow, so the mismatch is released from the enzyme rapidly. Thus, the substrate-induced-fit is the major determinant of specificity. The methods outlined here should be applicable to other enzyme systems.


Assuntos
DNA Polimerase Dirigida por DNA , Termodinâmica , Cinética , Especificidade por Substrato
5.
Nucleic Acids Res ; 51(1): 488-499, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36583345

RESUMO

Loop-mediated isothermal amplification (LAMP) has proven to be easier to implement than PCR for point-of-care diagnostic tests. However, the underlying mechanism of LAMP is complicated and the kinetics of the major steps in LAMP have not been fully elucidated, which prevents rational improvements in assay development. Here we present our work to characterize the kinetics of the elementary steps in LAMP and show that: (i) strand invasion / initiation is the rate-limiting step in the LAMP reaction; (ii) the loop primer plays an important role in accelerating the rate of initiation and does not function solely during the exponential amplification phase and (iii) strand displacement synthesis by Bst-LF polymerase is relatively fast (125 nt/s) and processive on both linear and hairpin templates, although with some interruptions on high GC content templates. Building on these data, we were able to develop a kinetic model that relates the individual kinetic experiments to the bulk LAMP reaction. The assays developed here provide important insights into the mechanism of LAMP, and the overall model should be crucial in engineering more sensitive and faster LAMP reactions. The kinetic methods we employ should likely prove useful with other isothermal DNA amplification methods.


Assuntos
Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase
6.
J Biol Chem ; 299(1): 102744, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436560

RESUMO

We show that T7 DNA polymerase (pol) and exonuclease (exo) domains contribute to selective error correction during DNA replication by regulating bidirectional strand transfer between the two active sites. To explore the kinetic basis for selective removal of mismatches, we used a fluorescent cytosine analog (1,3-diaza-2-oxophenoxazine) to monitor the kinetics of DNA transfer between the exo and pol sites. We globally fit stopped-flow fluorescence and base excision kinetic data and compared results obtained with ssDNA versus duplex DNA to resolve how DNA transfer governs exo specificity. We performed parallel studies using hydrolysis-resistant phosphorothioate oligonucleotides to monitor DNA transfer to the exo site without hydrolysis. ssDNA binds to the exo site at the diffusion limit (109 M-1 s-1, Kd = 40 nM) followed by fast hydrolysis of the 3'-terminal nucleotide (>5000 s-1). Analysis using duplex DNA with a 3'-terminal mismatch or a buried mismatch exposed a unique intermediate state between pol and exo active sites and revealed that transfer via the intermediate to the exo site is stimulated by free nucleoside triphosphates. Transfer from the exo site back to the pol site after cleavage is fast and efficient. We propose a model to explain why buried mismatches are removed faster than single 3'-terminal mismatches and thereby provide an additional opportunity for error correction. Our data provide the first comprehensive model to explain how DNA transfer from pol to exo active sites and back again after base excision allow efficient selective mismatch removal during DNA replication to improve fidelity by more than 1000-fold.


Assuntos
DNA Polimerase Dirigida por DNA , Exonucleases , Domínio Catalítico , DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Exonucleases/metabolismo , Cinética , Nucleotídeos , Escherichia coli/metabolismo
7.
ACS Bio Med Chem Au ; 2(6): 600-606, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36570070

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus that causes COVID-19, continues to evolve resistance to vaccines and existing antiviral therapies at an alarming rate, increasing the need for new direct-acting antiviral drugs. Despite significant advances in our fundamental understanding of the kinetics and mechanism of viral RNA replication, there are still open questions regarding how the proofreading exonuclease (NSP10/NSP14 complex) contributes to replication fidelity and resistance to nucleoside analogs. Through single turnover kinetic analysis, we show that the preferred substrate for the exonuclease is double-stranded RNA without any mismatches. Double-stranded RNA containing a 3'-terminal remdesivir was hydrolyzed at a rate similar to a correctly base-paired cognate nucleotide. Surprisingly, single-stranded RNA or duplex RNA containing a 3'-terminal mismatch was hydrolyzed at rates 125- and 45-fold slower, respectively, compared to the correctly base-paired double-stranded RNA. These results define the substrate specificity and rate of removal of remdesivir for the exonuclease and outline rigorous kinetic assays that could help in finding next-generation exonuclease inhibitors or nucleoside analogs that are able to evade excision. These results also raise important questions about the role of the polymerase/exonuclease complex in proofreading during viral replication. Addressing these questions through rigorous kinetic analysis will facilitate the search for desperately needed antiviral drugs to combat COVID-19.

9.
Nature ; 603(7900): 343-347, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236982

RESUMO

CRISPR-Cas9 as a programmable genome editing tool is hindered by off-target DNA cleavage1-4, and the underlying mechanisms by which Cas9 recognizes mismatches are poorly understood5-7. Although Cas9 variants with greater discrimination against mismatches have been designed8-10, these suffer from substantially reduced rates of on-target DNA cleavage5,11. Here we used kinetics-guided cryo-electron microscopy to determine the structure of Cas9 at different stages of mismatch cleavage. We observed a distinct, linear conformation of the guide RNA-DNA duplex formed in the presence of mismatches, which prevents Cas9 activation. Although the canonical kinked guide RNA-DNA duplex conformation facilitates DNA cleavage, we observe that substrates that contain mismatches distal to the protospacer adjacent motif are stabilized by reorganization of a loop in the RuvC domain. Mutagenesis of mismatch-stabilizing residues reduces off-target DNA cleavage but maintains rapid on-target DNA cleavage. By targeting regions that are exclusively involved in mismatch tolerance, we provide a proof of concept for the design of next-generation high-fidelity Cas9 variants.


Assuntos
Sistemas CRISPR-Cas , Reparo de Erro de Pareamento de DNA , Edição de Genes , RNA Guia de Cinetoplastídeos , Proteína 9 Associada à CRISPR/genética , Microscopia Crioeletrônica , DNA/química , DNA/genética , Conformação de Ácido Nucleico , RNA Guia de Cinetoplastídeos/genética
10.
J Biol Chem ; 298(3): 101627, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35074426

RESUMO

Faithful replication of genomic DNA by high-fidelity DNA polymerases is crucial for the survival of most living organisms. While high-fidelity DNA polymerases favor canonical base pairs over mismatches by a factor of ∼1 × 105, fidelity is further enhanced several orders of magnitude by a 3'-5' proofreading exonuclease that selectively removes mispaired bases in the primer strand. Despite the importance of proofreading to maintaining genome stability, it remains much less studied than the fidelity mechanisms employed at the polymerase active site. Here we characterize the substrate specificity for the proofreading exonuclease of a high-fidelity DNA polymerase by investigating the proofreading kinetics on various DNA substrates. The contribution of the exonuclease to net fidelity is a function of the kinetic partitioning between extension and excision. We show that while proofreading of a terminal mismatch is efficient, proofreading a mismatch buried by one or two correct bases is even more efficient. Because the polymerase stalls after incorporation of a mismatch and after incorporation of one or two correct bases on top of a mismatch, the net contribution of the exonuclease is a function of multiple opportunities to correct mistakes. We also characterize the exonuclease stereospecificity using phosphorothioate-modified DNA, provide a homology model for the DNA primer strand in the exonuclease active site, and propose a dynamic structural model for the transfer of DNA from the polymerase to the exonuclease active site based on MD simulations.


Assuntos
DNA Polimerase Dirigida por DNA , Exonucleases , DNA/química , DNA/genética , DNA/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
11.
J Biol Chem ; 298(1): 101451, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838820

RESUMO

High-fidelity DNA polymerases select the correct nucleotide over the structurally similar incorrect nucleotides with extremely high specificity while maintaining fast rates of incorporation. Previous analysis revealed the conformational dynamics and complete kinetic pathway governing correct nucleotide incorporation using a high-fidelity DNA polymerase variant containing a fluorescent unnatural amino acid. Here we extend this analysis to investigate the kinetics of nucleotide misincorporation and mismatch extension. We report the specificity constants for all possible misincorporations and characterize the conformational dynamics of the enzyme during misincorporation and mismatch extension. We present free energy profiles based on the kinetic measurements and discuss the effect of different steps on specificity. During mismatch incorporation and subsequent extension with the correct nucleotide, the rates of the conformational change and chemistry are both greatly reduced. The nucleotide dissociation rate, however, increases to exceed the rate of chemistry. To investigate the structural basis for discrimination against mismatched nucleotides, we performed all atom molecular dynamics simulations on complexes with either the correct or mismatched nucleotide bound at the polymerase active site. The simulations suggest that the closed form of the enzyme with a mismatch bound is greatly destabilized due to weaker interactions with active site residues, nonideal base pairing, and a large increase in the distance from the 3'-OH group of the primer strand to the α-phosphate of the incoming nucleotide, explaining the reduced rates of misincorporation. The observed kinetic and structural mechanisms governing nucleotide misincorporation reveal the general principles likely applicable to other high-fidelity DNA polymerases.


Assuntos
Aminoácidos , DNA Polimerase Dirigida por DNA , Corantes Fluorescentes , Aminoácidos/química , Aminoácidos/metabolismo , Pareamento de Bases , Domínio Catalítico , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Corantes Fluorescentes/química , Cinética , Nucleotídeos/química , Nucleotídeos/metabolismo , Conformação Proteica , Especificidade por Substrato
12.
Nucleic Acids Res ; 49(14): 8324-8338, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34302475

RESUMO

Bacterial replication is a fast and accurate process, with the bulk of genome duplication being catalyzed by the α subunit of DNA polymerase III within the bacterial replisome. Structural and biochemical studies have elucidated the overall properties of these polymerases, including how they interact with other components of the replisome, but have only begun to define the enzymatic mechanism of nucleotide incorporation. Using transient-state methods, we have determined the kinetic mechanism of accurate replication by PolC, the replicative polymerase from the Gram-positive pathogen Staphylococcus aureus. Remarkably, PolC can recognize the presence of the next correct nucleotide prior to completing the addition of the current nucleotide. By modulating the rate of pyrophosphate byproduct release, PolC can tune the speed of DNA synthesis in response to the concentration of the next incoming nucleotide. The kinetic mechanism described here would allow PolC to perform high fidelity replication in response to diverse cellular environments.


Assuntos
Proteínas de Bactérias/genética , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Infecções Estafilocócicas/genética , Staphylococcus aureus/genética , Difosfatos/metabolismo , Humanos , Cinética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade
13.
Anal Biochem ; 629: 114239, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33979658

RESUMO

Analysis of catalytic activity of nucleic acid enzymes is crucial for many applications, ranging from biotechnology to the search for antiviral drugs. Commonly used analytical methods for quantifying DNA and RNA reaction products based on slab-gel electrophoresis are limited in throughput, speed, and accuracy. Here we report the optimization of high throughput methods to separate and quantify short nucleic acid reaction products using DNA sequencing instruments based on capillary electrophoresis with fluorescence detection. These methods afford single base resolution without requiring extensive sample preparation. Additionally, we show that the utility of our system extends to quantifying RNA products. The efficiency and reliability of modern instruments offers a large increase in throughput but complications due to variations in migration times between capillaries required us to develop a computer program to normalize the data and quantify the products for automated kinetic analysis. The methods presented here greatly increase sample throughput and accuracy and should be applicable to many nucleic acid enzymes.


Assuntos
Ácidos Nucleicos/análise , Processamento Eletrônico de Dados , Eletroforese Capilar , Ensaios de Triagem em Larga Escala , Cinética , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Tiorredoxinas/metabolismo
14.
Mol Cell ; 81(7): 1548-1552.e4, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33631104

RESUMO

Remdesivir is a nucleoside analog approved by the US FDA for treatment of COVID-19. Here, we present a 3.9-Å-resolution cryo-EM reconstruction of a remdesivir-stalled RNA-dependent RNA polymerase complex, revealing full incorporation of 3 copies of remdesivir monophosphate (RMP) and a partially incorporated fourth RMP in the active site. The structure reveals that RMP blocks RNA translocation after incorporation of 3 bases following RMP, resulting in delayed chain termination, which can guide the rational design of improved antiviral drugs.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/química , RNA Viral/química , RNA Polimerase Dependente de RNA/química , SARS-CoV-2/fisiologia , Replicação Viral , Monofosfato de Adenosina/química , Monofosfato de Adenosina/uso terapêutico , Alanina/química , Alanina/uso terapêutico , Antivirais/uso terapêutico , Domínio Catalítico , Humanos , Proteínas Virais
15.
STAR Protoc ; 2(1): 100357, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33558863

RESUMO

The RNA-dependent-RNA polymerase (RdRp) from SARS-CoV-2 is an important drug target because it is responsible for viral RNA genome replication. Efficient production of recombinant RdRp is important in screening antivirals to treat COVID-19. Here, we present our protocol for expression of tag-free replication complex proteins in E. coli and subsequent purification. Despite the added complexity of multiple purification steps, our methods provide greater activity, yield at lower cost, and are faster than baculovirus expression systems. For complete details on the use and execution of this protocol, please refer to Dangerfield et al. (2020).


Assuntos
RNA-Polimerase RNA-Dependente de Coronavírus , Escherichia coli/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes , COVID-19/virologia , RNA-Polimerase RNA-Dependente de Coronavírus/química , RNA-Polimerase RNA-Dependente de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/isolamento & purificação , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
16.
J Biol Chem ; 296: 100143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33273013

RESUMO

We address the role of enzyme conformational dynamics in specificity for a high-fidelity DNA polymerase responsible for genome replication. We present the complete characterization of the conformational dynamics during the correct nucleotide incorporation forward and reverse reactions using stopped-flow and rapid-quench methods with a T7 DNA polymerase variant containing a fluorescent unnatural amino acid, (7-hydroxy-4-coumarin-yl) ethylglycine, which provides a signal for enzyme conformational changes. We show that the forward conformational change (>6000 s-1) is much faster than chemistry (300 s-1) while the enzyme opening to allow release of bound nucleotide (1.7 s-1) is much slower than chemistry. These parameters show that the conformational change selects a correct nucleotide for incorporation through an induced-fit mechanism. We also measured conformational changes occurring after chemistry and during pyrophosphorolysis, providing new insights into processive polymerization. Pyrophosphorolysis occurs via a conformational selection mechanism as the pyrophosphate binds to a rare pretranslocation state of the enzyme-DNA complex. Global data fitting was achieved by including experiments in the forward and reverse directions to correlate conformational changes with chemical reaction steps. This analysis provided well-constrained values for nine rate constants to establish a complete free-energy profile including the rates of DNA translocation during processive synthesis. Translocation does not follow Brownian ratchet or power stroke models invoking nucleotide binding as the driving force. Rather, translocation is rapid and thermodynamically favorable after enzyme opening and pyrophosphate release, and it appears to limit the rate of processive synthesis at 4 °C.


Assuntos
Aminoácidos/química , Bacteriófago T7/enzimologia , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Fluorescência , Corantes Fluorescentes/química , Conformação Proteica , Especificidade por Substrato , Termodinâmica
17.
iScience ; 23(12): 101849, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33283177

RESUMO

COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is currently being treated using Remdesivir, a nucleoside analog that inhibits the RNA-dependent-RNA polymerase (RdRp). However, the enzymatic mechanism and efficiency of Remdesivir have not been determined, and reliable screens for new inhibitors are urgently needed. Here we present our work to optimize expression in E. coli, followed by purification and kinetic analysis of an untagged NSP12/7/8 RdRp complex. Pre-steady-state kinetic analysis shows that our reconstituted RdRp catalyzes fast (k cat  = 240-680 s-1) and processive (k off  = 0.013 s-1) RNA polymerization. The specificity constant (k cat /K m ) for Remdesivir triphosphate (RTP) incorporation (1.29 µM-1s-1) is higher than that for the competing ATP (0.74 µM-1 s-1). This work provides the first robust analysis of RNA polymerization and RTP incorporation by the SARS-CoV-2 RdRp and sets the standard for development of informative enzyme assays to screen for new inhibitors.

18.
J Biol Chem ; 295(50): 17265-17280, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33020184

RESUMO

DNA polymerase from bacteriophage T7 undergoes large, substrate-induced conformational changes that are thought to account for high replication fidelity, but prior studies were adversely affected by mutations required to construct a Cys-lite variant needed for site-specific fluorescence labeling. Here we have optimized the direct incorporation of a fluorescent un-natural amino acid, (7-hydroxy-4-coumarin-yl)-ethylglycine, using orthogonal amber suppression machinery in Escherichia coli MS methods verify that the unnatural amino acid is only incorporated at one position with minimal background. We show that the single fluorophore provides a signal to detect nucleotide-induced conformational changes through equilibrium and stopped-flow kinetic measurements of correct nucleotide binding and incorporation. Pre-steady-state chemical quench methods show that the kinetics and fidelity of DNA replication catalyzed by the labeled enzyme are largely unaffected by the unnatural amino acid. These advances enable rigorous analysis to establish the kinetic and mechanistic basis for high-fidelity DNA replication.


Assuntos
Cumarínicos/química , DNA Polimerase Dirigida por DNA/química , Corantes Fluorescentes/química , Glicina , DNA/biossíntese , DNA/química , DNA/genética , Replicação do DNA , DNA Polimerase Dirigida por DNA/biossíntese , DNA Polimerase Dirigida por DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Glicina/análogos & derivados , Glicina/química
19.
J Am Chem Soc ; 142(34): 14522-14531, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32623882

RESUMO

Two azobenzenesulfonamide molecules with thermally stable cis configurations resulting from fluorination of positions ortho to the azo group are reported that can differentially regulate the activity of carbonic anhydrase in the trans and cis configurations. These fluorinated probes each use two distinct visible wavelengths (520 and 410 or 460 nm) for isomerization with high photoconversion efficiency. Correspondingly, the cis isomer of these systems is highly stable and persistent (as evidenced by structural studies in solid and solution state), permitting regulation of metalloenzyme activity without continuous irradiation. Herein, we use these probes to demonstrate the visible light mediated bidirectional control over the activity of zinc-dependent carbonic anhydrase in solution as an isolated protein, in intact live cells and in vivo in zebrafish during embryo development.


Assuntos
Compostos Azo/química , Anidrases Carbônicas/metabolismo , Luz , Sondas Moleculares/química , Sulfonamidas/química , Animais , Compostos Azo/síntese química , Anidrases Carbônicas/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Simulação de Acoplamento Molecular , Sondas Moleculares/síntese química , Estrutura Molecular , Sulfonamidas/síntese química , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...